

 Navigation

 	
 index

 	
 next |

 	archimedes 0.3.0 documentation

Welcome to Archimedes’s documentation!

Contents:

	Intro
	Installation

	Facts and checks

	Hypothesis

	Errors

	Hamcrest

	Hymn

Indices and tables

	Index

	Search Page

 Copyright 2017, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	archimedes 0.3.0 documentation

Intro

Archimedes is a collection of macros for writing tests. It’s geared towards
nose [http://nose.readthedocs.io/en/latest/], but other test runners that work in similar manner should work too.

Main goal for Archimedes is to make testing fun and as easy as possible.

Installation

Preferred installation method is pip (in virtualenv or equivalent):

pip install libarchimedes

 Copyright 2017, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	archimedes 0.3.0 documentation

Facts and checks

Basic building block is of course a test case. Archimedes follows nose
convention, where test function name starts with “test_”, so they’re easy
to collect and execute programmatically. To define a test case, fact
macro is used:

(fact "this is a test case"
 (assert (= 1 1)))

This will define a function, which is equivalent to:

(defn test_this_is_a_test_case []
 "this is a test case"
 (assert (= 1 1)))

Nose (or any other test framework that follows the convention) can then
programmatically find this and execute it.

Sometimes one might want to execute test case immediately. This can be useful
when working in interactive mode, be it Hy repl or Jupyter [http://jupyter.org/] notebook. For these
situations, there is check macro. It defines test case just like fact
macro does and then executes it:

(check "this is executed immediately"
 (assert (= 1 1)))

Both of these support specifying common setup code that can be shared between
several test cases. background macro specifies setup code with a unique
name and with-background takes one or more variables from that
specification in use. Since this probably sounds a bit confusing, an example
is in order:

(background some-numbers
 [a 3]
 [b 4]
 [c 5])

(fact "sum of two numbers"
 (with-background some-numbers [a b]
 (assert (= (+ a b) 7))))

(fact "product of three numbers"
 (with-background some-numbers [a b c]
 (assert (= (* a b c) 60))))

Background can contain arbitrarily many variable definitions and they can be
more complex than simple values (calculations for example).

 Copyright 2017, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	archimedes 0.3.0 documentation

Hypothesis

Hypothesis [https://hypothesis.readthedocs.io/en/latest/] is a Python library for property based testing, similar to what
QuickCheck [https://hackage.haskell.org/package/QuickCheck] in Haskell [https://www.haskell.org/]. Archimedes provides few parameters for fact and
check macros that are used to instruct Hypothesis to generate test data.

Note

Some knowledge of Hypothesis is assumed for this section.

Three macros are provided for controlling Hypothesis: variants, sample
and profile.

variants macro controls test data generation. It maps into given
decorator in Hypothesis. Body of variants consists of two or more items.
Every odd specifies variable name and element after that is strategy
specifying what kind of data to generate.

sample maps to example decorator. It specifies concrete examples
for variables to check. Other than that, it works just like variants
macro (variable, value).

profile maps into settings decorator in Hypothesis. It is used to
tweak behaviour of Hypothesis for a specific test case.

Below is an example test case that showcases usage of all these elements.

(require archimedes)
(import [hypothesis.strategies [integers]])

(fact "sum of two positive numbers is larger than either one of them"
 (variants :a (integers :min-size 1)
 :b (integers :min-size 1))
 (sample :a 0 :b 0)
 (profile :max-examples 500)
 (assert (> (+ a b) a))
 (assert (> (+ a b) b)))

This causes test case to be run at maximum of 500 times. There are two
parameters a and b, which both are integers and have value of 1
or greater. There is also a specific test case for them being zero.

 Copyright 2017, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	archimedes 0.3.0 documentation

Errors

Sometimes it’s useful to verify that a certain exception is raised. This is
achieved with assert-error or assert-macro-error macro. Both take two
parameters: a string and piece of code. The code is executed and resulting
exception is compared with the provided string. In case of assert-error
this comparison is done by simply calling str for exception. For
assert-macro-error message attribute is used. If no exception is raised,
or raised exception doesn’t match the provided string, assertion fails.

(fact "errors can be asserted"
 (assert-error "error"
 (raise (ValueError "error"))))

(fact "macro errors can be asserted"
 (assert-macro-error "cond branches need to be a list"
 (cond (= 1 1) true)))

 Copyright 2017, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	archimedes 0.3.0 documentation

Hamcrest

(defmatcher is-zero? []
 :match? (= item 0)
 :match! "a zero"
 :no-match! (.format "was a value of {0}" item))

(assert-that 0 (is-zero?))

(attribute-matcher item-with-length?
 len =
 "an item with length {0}"
 "was an item with length {0}")

(assert-that "foo" (is- (item-with-length? 3)))

 Copyright 2017, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	archimedes 0.3.0 documentation

Hymn

(assert-right (do-monad [status (advance-time-m society)]
 status)
 (assert-that society
 (has-less-resources-than? old-resources)))

 Copyright 2017, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	archimedes 0.3.0 documentation

Index

 Copyright 2017, Tuukka Turto.
 Created using Sphinx 1.3.5.

 _static/comment.png

_static/file.png

search.html

 Navigation

 		
 index

 		archimedes 0.3.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2017, Tuukka Turto.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/down-pressed.png

_static/minus.png

